A Remark on the Virtual Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces
نویسنده
چکیده
Inspired by his vanishing results of tautological classes and by Harer’s computation of the virtual cohomological dimension of the mapping class group, Looijenga conjectured that the moduli space of smooth Riemann surfaces admits a stratification by affine subsets with a certain number of layers. Similarly, Roth and Vakil extended the conjecture to the moduli spaces of Riemann surfaces of compact type, of Riemann surfaces with rational tails and of Riemann surfaces with at most k rational components. As a consequence of Lefschetz’s theorem, Roth-Vakil’s conjecture would also imply that the previous (coarse) moduli spaces are homotopy equivalent to cellular complexes of a certain dimension. Using Harer’s computation for the moduli spaces of smooth Riemann surfaces, we prove this last statement.
منابع مشابه
A Remark on the Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces
Using a result of Harer, we prove certain upper bounds for the homotopical/cohomological dimension of the moduli spaces of Riemann surfaces of compact type, of Riemann surfaces with rational tails and of Riemann surfaces with at most k rational components. These bounds would follow from conjectures of Looijenga and Roth-
متن کاملUniversal moduli spaces of surfaces with flat bundles and cobordism theory
For a compact, connected Lie group G, we study the moduli of pairs (Σ,E), where Σ is a genus g Riemann surface and E →Σ is a flat G-bundle. Varying both the Riemann surface Σ and the flat bundle leads to a moduli space Mg , parametrizing families Riemann surfaces with flat G-bundles. We show that there is a stable range in which the homology of Mg is independent of g. The stable range depends o...
متن کاملManuscripta Mathematica Manuscript-nr. Triangulations and Moduli Spaces of Riemann Surfaces with Group Actions ?
We study that subset of the moduli space M g of stable genus g, g > 1, Riemann surfaces which consists of such stable Riemann surfaces on which a given nite group F acts. We show rst that this subset is compact. It turns out that, for general nite groups F, the above subset is not connected. We show, however, that for Z 2 actions this subset is connected. Finally, we show that even in the modul...
متن کاملStability phenomena in the topology of moduli spaces
The recent proof by Madsen and Weiss of Mumford’s conjecture on the stable cohomology of moduli spaces of Riemann surfaces, was a dramatic example of an important stability theorem about the topology of moduli spaces. In this article we give a survey of families of classifying spaces and moduli spaces where “stability phenomena” occur in their topologies. Such stability theorems have been prove...
متن کاملHeat Kernel and Moduli Spaces Ii
1. Introduction. In this paper we continue our study on the topology of the moduli spaces of flat bundles on a Riemann surface by using the heat kernels on compact Lie groups. As pointed out in [Liu], our method is very similar to the heat kernel proof of the Atiyah-Bott fixed point formula and the Atiyah-Singer index formula. In our case the local density is given by the Reidemeister torsion o...
متن کامل